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A numerical formulation for modelling standing acoustic waves of finite but mod-
erate amplitude is presented. A thermoviscous fluid contained in a one-dimensional
tube with rigid walls is considered. The fluid is initially at rest and is excited by means
of a harmonic piston. A second-order wave equation for viscous and homogeneous
fluids is used. The perturbation method is employed. The numerical simulation is
carried out by a multi-time-step, implicit, six-point finite-difference scheme of high
order inthe time domain. Displacement and pressure waveforms and distributions are
presented. Numerical results are validated by comparison with an analytical model.
The numerical scheme is illustrated with several examples2000 Academic Press
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1. INTRODUCTION

High-intensity ultrasonic waves are becoming increasingly useful in industrial process
for applications such as particle agglomeration, liquid atomization, cleaning, control
foam, and drying. These applications are possible because of the nonlinear effects prod
by high-frequency and finite-amplitude pressures—macrosonic waves. The efficiency
this industrial processing is based on the intense nonlinear acoustic field established w
the treatment chamber. Therefore, knowledge of the distribution of the nonlinear pres:s
inside bounded cavities is important for developing practical systems. When amplitudes
infinitesimal, the acoustic waves can be described by linear laws. When the acoustic-pres
amplitude becomesfinite, the equations of motion are nonlinear. We presenta new nume

procedure for the study of standing acoustic waves of finite but moderate amplitude.

334

0021-9991/00 $35.00
Copyright(© 2000 by Academic Press
All rights of reproduction in any form reserved.



ALGORITHM FOR NONLINEAR ACOUSTIC WAVES 335

Several papers have presented analytical studies of the propagation of nonlinear w
[1, 2], as well as the behaviour of nonlinear standing waves [3, 4]. The physical basis
nonlinear acoustics has also been reviewed [5-9].

Numerical methods applied to the study, modelling, and design of complex sonic
ultrasonic systems are usually based on the finite-element method or the boundary-ele
method, or the coupling of both methods [10-12]. They use the well-known Helmho
equation to describe the linear acoustical behaviour of infinitesimal amplitude waves.

On the other hand, various numerical methods have been developed for studying prog
sive nonlinear waves [13—16]. They are generally based on the finite-difference mett
A very good review is also available (see Section 11 of Ref. [9]). Far fewer numeric
developments exist for standing waves. Of special interest is the recent paper by llin
et al.[17], which presents an algorithm in the frequency domain based on the Runge—K
method. The model in Ref. [17] is valid for one-dimensional nonlinear standing waves
an ideal gas. Their mathematical model considers a one-dimensional resonator of arbi
shape.

We propose a numerical algorithm for the study of standing acoustic waves of
nite but moderate amplitude. Based upon the finite-difference method, it operates in
time domain [18]. A second-order wave equation written in Lagrangian coordinates
considered [5]. Losses due to dissipation of the fluid are taken into account, but los
due to the walls of the tube are not considered. Dissipation losses are represented
third-order partial derivative of the displacement. The dissipation values are not limit
[19].

This work constitutes the first step of a more ambitious and general project. The fi
objective is to have a useful tool for designing systems for high-power ultrasonic applicati
(e.g., sonochemical reactors, systems for acoustic agglomeration, and compressors
includes nonlinear effects. This means that strongly nonlinear waves, three-dimensi
cavities, etc., will have to be modelled. The moderate-amplitude case treated here is
first step. The validation of its numerical approximation will provide a solid foundation fc
constructing successive future models.

2. FUNDAMENTAL EQUATIONS

The paper by Beyer [5] is one of the most complete reviews of the state of the ar
nonlinear acoustics. It includes the basic equations of nonlinear acoustics, as well as
most important contributions to the development of the field throughout its history.

We consider finite-amplitude standing waves in a homogeneous and thermoviscous f
Only the terms up to the second order in the acoustic Mach number defingg/lyc3 are
considered, wherp,. is the acoustic pressurg; the density of the medium at rest, and
the small-signal sound speed.

As is well known, a mechanical system can be described using two kinds of coordin
systems: Lagrangian (or material) coordinates and Eulerian (or spatial) coordinates |
The systems are equivalent when infinitesimal-amplitude perturbations are studied but |
important differences when finite-amplitude perturbations are analysed. We use Lagran
coordinates.

To obtain the second-order one-dimensional wave equation, the state equation fo
isentropic fluid [9, Chap. 2] and the conservation of the mass and momentum are considé
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These equations, without external forces, can be written for a viscous fluid as
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wherep is the pressure is the density of the fluidy is the displacement of the particle,

is the relation of specific heatB, = poc3/y, andvb is a parameter which gives an idea of
the viscosity of the medium-+-is the kinematic viscosity anid = ‘5‘ + % n" andn being
the viscosities of the medium [5Q is a characteristic parameter of the fluid. For an idea
gas,Q = 0, and for sea wate® = 3 kbar [20]. More details about the applicability of the
state equation (1) can be found in Ref. [20]. From Egs. (1) and (2) it is easy to obtain
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Equation (4) can be approximated by an expansion in Taylor series in terms of the sr
parametel‘;—ﬁ (of the order of the acoustic Mach number) up to the second order:
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Combining Egs. (5) and (3), we obtain the following second-order wave equation
Lagrangian coordinates:
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The value ofy determines the nonlinear behaviour of the fluid and can be found in t
literature for the most common fluids (see for instance the chapter by Beyer in Ref. 9). V

often this equation is written in terms of the so-called nonlinearity parametiafined as

— v+l
B="5

To solve the second-order wave equation (6) the perturbation method is applied. -
solution for the displacement of the particle is assumed to be the addition of two terms,
linear solutionu, plus a second-order correctiag,

U=u + Up. (7)

u, must be much smaller than (u; <« u)). Sinceu, represents the linear solution, it has
to verify

92y, 92y RE
PU_p p Y
Vaxz TPV050xe

o2 e (8)

Lo
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Truncating all the terms of third or higher order, the equation for the perturbation te
us is

©)

32U, 32U, a3u, (r+1 a[/ou\?
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If the system has a harmonic excitatienwill have a unique spectral component centrec
at the excitation frequency, while will present the double and zero frequencies.

In line with our second-order approximation, the state equation (1) can be written
an expansion in Taylor series in terms of the paramgtgr- p)/ o (of the same order as
the acoustic Mach number). The resulting equation is combined with Eq. (2), to which
same approximation has been applied. In this way the following expressions for the lin
pressurep, and the second-order perturbatipsnare obtained

ou auy

=—Py— -Q WL e A oy’ (10)

The fluid is at complete rest at its initial state= 0, and is then excited by harmonic
motion of a piston ak = 0 at the pulsatiomw (w = 27 f where f is the frequency). The
following initial and boundary conditions are added to Egs. (8) and(®ging the length
of the tube:

for the linear displacement,

x=0 ui (0, t) = ug sin(wt)
X=1L u(L,t)=0

(11a)
ux,0=0
t=0 U0 _ VX = 0
for the second-order component of the displacement,
Xx=0 u,(0,t) =0
X=L u(L,t) =0 (11b)

.0)=0
f—o {Uz(X )

dUx(x,0) __
at =0.

3. FINITE-DIFFERENCE ALGORITHM

Inthis section, the numerical scheme developed to model nonlinear acoustical phenor
is described. The technique allows the evaluation of the solutiaich is a function of the
independent variablesandt. Pressure is then calculated. Thus, the acoustical behaviou
of the fluid in the tube is completely known.

In order to solve the nonlinear acoustical problem described in the preceding Sectio
numerical approximation in the time domain has been chosen. Therefore all the freque
components of the second-order correction are taken into account directly by mean
only one computation. Bulk viscosity of the fluid appears in the differential equation |
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means of a third-order partial derivative. Initially, the fluid is assumed to be absolutely
rest. The transient phase, which occurs just before the steady-state phase (standing w
is entirely modelled. In this paper, the nonlinearity of the equation is limited to the seco
order; in the development of the Mach number, all the terms of order 3 or higher ¢
neglected.

3.A. New Dimensionless Variables

For numerical purposes it is better to write equations in dimensionless form. With t
objective, we create two dimensionless independent variables:

X
L!
Therefore spatial and temporal spaces remain dimensionless, but the displacer
u and pressurep are still quantities with dimensions. The partial derivatives are the
written

au_lau 8u_ ou
ax  Lax ot “aT

(13)
3%u 1 9% d%u  ,d0% 3%u o 33u
_— = —— —_— = — = — .
ax2 L29X2 ot2 T2 %20t L29X23T
So, Egs. (8), (9), and (10) take the forms, respectively,
92u b d%u 2 3%u
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2
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The boundary and initial conditions for Eq. (11) are then written as
X=0 u (0, T) = ugsin(T)
X=1 uy@T)=0
17)
u(X,0 =0
T=0 Ui (X.0)
WXD =0 (VX #0)
X=0 ux0,T)=0
X=1 u@T)=0
(18)

(X0 _

u(X,00 =0
T—0 {2( )
oT
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FIG. 1. Discretisation of the dimensionle¥s-T plane.

3.B. Mathematical Formulation

The mathematical formulation employed for the numerical treatment of equations is n
presented. The numerical technique is based on the finite-difference method [21, 22].

3.B.1. Discretisation. The discretisation stage begins by subdividing the dimensior
less X—T (space—time) plane into sets of equal rectangles of sides h andéT =
with equally spaced grid lines. This process generates a number of NPS points in
dimensionless-spatial space definedgy= (m—1)h (m=1,..., NPS) and a number
of NPT points in the dimensionless time space define@iby (n — 1)t (n =1, ..., NPT),
as shown in Fig. 1. Thus, the variabteranges from 0 to 1 in increments lofthe variable
T ranges from 0 to 2 NP in increments of, NP being the number of periods desired in
the study. We denote hyy, , (respectivelypmn) the displacement (respectively pressure;
at the node X, Tn) of the plane.

3.B.2. Finite-difference numerical schem&\Ve now take into account the discretisation
in equations. The variableis now considered to be regular up to the fifth ordeRfnand
the variablep up to the second order . The finite-difference scheme has been develope
regarding the bulk-viscosity term: a third-order partial derivative, doublé and single
in T. The role of this operator is very important for the formation of the nonlinear standi
wave in the tube. For the numerical treatment of this third-order partial derivﬂe;ﬁyg, an
approximation scheme with a high order of truncation error has been developed: a m
time-step, implicit, six-point scheme. It is allowed by approximation of displacemen
(functions of two variables) up to the fifth order. By using the “computational molecule
[21], this operator can be expressed as

(0)....... (O)m,n. ...... (6) +0h?+1%. (19
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In this way we can represent the other operators of the equations:

32 1 )
X2 = ﬁ{(—i_l) ...... —Dmn-e---- (+1)}+ O(h9)
(+1)
92 1 : (20)
372 mn=§ (—2')m,n +O(1'2)
(+1)
3 3 \? 1
X KB_X> ] = ﬁ[{(O) ...... (—Dmn--... (+1))?

—{(=1...... +Dmn---... 0} +0M) (21)

The “computational molecule” used in Egs. (19), (20) and (21) means that the number
the “atoms” (for instance(1)) are the multipliers of the function values (the displacemen
U; Or up) at the corresponding mesh points.

From Egs. (14) the finite-difference approximationsdgrandu, have respectively the
order O(t?) 4+ O(h? + t2) + O(h?) and O(?) + O(h? + 72) + O(h?) + O(h). There-
fore both difference equations are respectively consistent with the partial differential eq
tions.

Pressures at grid points are evaluated through a classical progressive finite-differe
scheme from the values of the displacement.

Since the numerical scheme is implicit, at each time step, alinear set of (NPS-2) equat
with (NPS-2) unknowns has to be solved. The solutions are determined by means of
Gauss method [23].

The computation code is written in FORTRAN 77 and formulated using double precisi
real numbers. It has been called SNOW-AC (Simulation of NOnlinear Waves in ACoustic

In the following the stability of the numerical scheme for the equations (8) and (9)
analysed using the von Neumann method [21].

The numerical scheme obtained farcan be written:

—AUm—1n + CA+ DUnn—AUns1in = —AUm—1.n-2 + A — D)Um n—2 — AUmt1n—2
+ BUm-1,n-1 + 2(1 — B)Umn-1 + BUmy1n-1
(22)

with A =vbr/mcerh? = (vb/mcr)(r/h?) = aX and B=1?/7°h? = (1/7?)(t%/h?) =
bY;a > 0,b> 0, X > 0,Y > 0. We introduce an initial line of errors and we decompose¢
this error at the grid points by a finite Fourier series and we investigate its propagatior
t increases. We puty, , = €M with the complex numbeir = /—1, 8 the frequency
of the error (which is a real number), agdhe amplification factor. The substitution of
Umn = €M into the difference equation (22), after some trigonometric identities ar
algebraic manipulations, leads to the following algebraic equation:

(a3 ) ormn(3) - -7 -

(23)
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The roots of Eq. (23) are

_ B /B?2—4A(-A+2)
= oA 2A
(24)

B B2-4A(-A+2)

2=5a" 2A

whereA = daXsirf(2) + 1 andB = 2 — 4bY sirf(4). If |¢| < 1 the numerical scheme
is stable [21, 24]. It can be seen thatdsir?(4) > 0 and DY sirP(&)/(4aX sirP(2)) +
1) > 0and thereforez% < +1. Two possibilities are now contemplated.

Q) If % <-1&< ﬁ < —1= |&]| > 1: the approximation is unstable. However,
this situation cannot be satlsfiegi' cannot be less thanl
(2) If =1 < 5 < +1, the only useful inequality;-1 < ﬁ, is always satisfied.
(2.1) If BZ+4A2 8A <0, and hence ifr? < 72h? — 4(vb)?72/c3A?, then the
roots of the equation can be written

L 8A—4A2 B2 \'?
Y 4N ap

(25)

B . /8A—4A2 B2 \V?
T <4A2 B 4A2>
and thug&;| = [&] = (BA 35 4A2)1/2 A > 1implies|&;| = |&| < 1. It can be seen thak is
always greater than or equal to 1 and so in this ¢age= |£,| < 1 is always satisfied.
(2.2) If B2+ 4A% — 8A > 0. This inequality cannot be satisfied.
Finally, the inequality

12 < g2 _ A0 (26)
72

is the stability condition. Thus the finite-difference approximation is conditionally stabl
Figure 2 shows the domains of stability and instability performed by the von Neuma
stability analysis withf = 20 kHz,« = 1.81 nT1, andcy = 340 m/s. A useful relation
betweerh andzt that satisfies the stability condition is employed in the simulations:

_ —vbr (vb)2 )
T = o + c§k2+h' (27)

It is also represented in Fig. 2.

The numerical scheme obtained fgrcan be written

—AUm—1n + CA+ DUmn — AUmyin = —AUm—1.n—2 + A — DUmn—2 — AUms1,n—2
+ BUm—1n-1+ 2(1 — B)Umn-1
+ BUmyin-1+ Ky, | (28)
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Stability condition

Relation employed

Instability zone

e 0.2 —
0.1 — Stability zone
0.0 —<— I T I T I T T I T |
0.00 0.02 0.04 0.06 0.08 0.10 0.12

FIG. 2. Stability and instability zones produced by the von Neumann analysis. For the represeritation,
20 kHz,a = 1.81 nT* andc, = 340 m/s. Comparison of the von Neumann criterion with the relation betiveen
andr employed during the simulations.

with A = vbr/mcoah? = (vb/mcor)(t/h?) = aX, B =12/7%h? = (1/n?)(t%/h?) =

bY; a>0,b>0,X>0,Y>0. Ky =C[(Uy,,,, — Ui, )" = Uy, — U, )2
whereC = c3(y + 1)t2/20?L3h3, issues from the calculations of and is considered to
be a constant. The constal(n@lm1 does not influence the von Neumann analysis. Therefor
this analysis yields to the same criterion asupr

Input data (data of the medium,
frequency and amplitude of
excitation, length of the tube,

number of periods of the study,
discretisation step of space). Q
Calculation of the

parameters (physical and
numerical).

Computation of the linear

displacements ( written on disk).

Computation of the second-
order displacements ( written
on disk).

Computation of the total

displacements { written on disk).
Computation of the pressures
( written on disk).

FIG. 3. Procedure of the computational code.

Output (post-processing
treatment).
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The analysis of stability has shown the usefulness of the relation (27) betwamth;
when this relation is employed, the finite-difference approximation is stable. As shown |
fore, the finite-difference equations are both consistent with the partial differential equatic
So when the relation (27) betweerandh is employed, it follows that the finite-difference
approximation is convergent [21]. An example of the convergence of the scheme is sh
in Section 4.B.

A value oft less than the value used by the relation (27) could also ensure the stabi
(see Fig. 2). Nevertheless the relation (27) automatically fixes tladues very close to the
stability bound.

Figure 3 shows the schematic representation of the algorithm. The space reserved fc
writing on disk is (21% NPT« NPS/(1024) Mbytes. This storage includes two files (for
displacement and pressure) written by columns, which make the posttreatment easier.

4. RESULTS

In this section, the algorithm presented above is illustrated. All the computations w
run on a processor Pentium [l MMX of 300 MHz and 64 MB Ram. CPUt means the runni
time of a simulation using this processor. This time includes an analytical calculation
the linear solution at grid-points and an evaluation of its maximum value in order to ge
reference for fast comparisons with the nonlinear values.

4.A. Validation

In this section, results from the numerical algorithm are compared with results produt
by an analytical model. This analytical model is also a perturbation model and Egs. (8)
(9) are solved in the frequency domain; i.e., an equation is written and solved for ev
frequency studied. The approximatiank k is also assumed (whete= w?vb/2c3 and
k = w/c), and then all terms of ordes or less are neglected.

With this approximation the following solution is obtained for Eq. (8) and the bounda
conditions (11a),

sink(L — x)
U = Ug cosmw, (29)
wherek = kg — i, kg = %. By substituting solution (29) into Eq. (9) we obtain the seconc
order correction

Uz = cog2wt)[Cy cos((2Kg — i4ap) (L — X)) + Casin((2Kg — i4ao) (L — X))]
+ (D1x + D3) + C3coq2wt) (L — x) cosk,(L — x) + DssinXk(L —x)  (30)
withk, = 2kg — i, WhereCq, Co, C3, Dy, Ds, D3, andx,, are indefinite constant€;, C,,
D, andD; are obtained from the boundary conditions, &d D3, anda,, by substituting

Eq. (30) into the wave equation (9). For the perturbatigmwe consider a rigid-ended tube
because the piston is harmonically vibrating (boundary conditions (11b)),

O
AS
Il

0 D; = D3sinXL/L
(31)

ng—j— D2=—D3$in2kL,
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FIG. 4. Comparison between numerical and analytical results for a resonant air-filled tube excited at 20 k
Up=3x10"m;a =181 nr% L = A/2. (a) First-order component. (b) Second-order perturbation.

where the assumption of small attenuation has been used. By substituting solution (30)
Eq. (9), using (31) 3al’2]d again neglecting all the terms on the ordef,of?, andago, we
obtainC; = % si;[iou , an = 200, andD3 = $2. Even if the treatment of the attenuation
is more approximate, important differences are not expected for small attenuation val
and tube lengths which are not too large.

Both methods are applied to an air-filled rigid-walled tufi® = 340 m/s; po =
1.29 kg/n?). The excitation frequency of the piston is 20 kHz and its maximum displac
mentug = 3 x 10~" m. We considey = 1.6. As explained above, only bulk attenuation is
considered (a? attenuation dependence), without any limitation on its parameter walue
This fact allows this value to increase in order to take indirectly into account losses due
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FIG.5. Convergence study of the scheme at 20 kithzi= 3 x 107’ m; @ = 1.81 n1%; L = 1/2. (a) Funda-
mental frequency. (b) Second-order perturbation.

the walls of the tube that are not considered explicitly. The model is effectively applied
narrow tubes in which a large quantity of energy is lost in the walls. So we have to incre
the attenuation value to produce a more realistic simulation, which isam#yl.81 ntt, a

high value for a free-field problem. The length of the resonant tube-isi /2 = 0.0085 m.

For the numerical simulation, the spatial stefs 0.02, and 200 periods (0.01 s) are anal-
ysed; in this way, NPS= 51 and NPT=21620. CPUt= 2:08:00. The storage used on disk
is 228.18 Mbytes. Figure 4 shows the amplitude displacement obtained with both meth
Displacement distributions are compared in Fig. 4a for the first-order approximation an
Fig. 4b for the corresponding second-order perturbation. Excellent agreement betweel
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FIG. 6. Temporal evolution of the acoustic wave in the resonant tube from the rest state at 20,kHz;
3x 107 m;a =181nt; L = A/2. (a) Fundamental component of the displacemeny 4t (b) Second-order
component ak /8. (c) Second-order componentig¥.
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FIG. 7. Distribution of the pressure amplitude at 20 kHg; = 3 x 107 m; @ =1.81 n%; L = 1/2.
(a) Fundamental component. (b) Second-order component.

analytical and numerical methods is observed, which means convergence of the nume
scheme has been obtained and the results we get are coherent with the analytical one

4.B. Convergence Study

A convergence study was performed analysing the example presented above. We con
the results of using 51 spatial points versus other numbers of points to solve the s:
problem. A series of calculations was performed with various spatial-grid sizes: 4, 7,
26, and 51 spatial points. Results are shown in Fig. 5. Figure 5a shows the fundame
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FIG. 8. Wave form (a) and harmonic components (b) of the pressure at the reflector at 2Q,kHZA x
10"ma=181mlL=qa/2

frequency component and Fig. 5b shows the second-order perturbation. Rapid evolutic
convergence can be seen when the number of spatial points grows (see Section 3.B.2

4.C. Examples

In this section, various results show that the numerical methods presented in Section:
well founded. In the first part, the considered resonant rigid-walled tubes have a lengt!
A/2, A being the wavelength corresponding to the excitation frequency; in the second p
A/2-, A-, and 3./2-length resonant rigid-walled tubes are studied. All the results present
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a) Linear Pressure F?a)

0 o
Time (s) Distance (m)

b) Second order correction Pressure (Pa)

100y

Time () oo

Distance (m)

FIG. 9. Amplitude value of the standing pressure at 30 kbg=3 x 107 m; « = 4.07 nT%; L = 1/2.
(a) Linear pressure. (b) Second-order pressure.

were obtained from simulations performed with a number of spatial points suitable to le
to convergence of the numerical scheme. By modelling the transient stage from star
absolute rest of the fluid, we are able to simulate the whole real problem. Neverthel
more time grid-points are needed and therefore more CPUt and computer storage cap

4.C.1. The same example used to compare the numerical and analytical moc
(Section 4.A) is considered. Figure 6 shows the temporal evolution of both first (6a) ¢
second-order (6b and 6c) components of the displacement, from the rest state to the
tionary wave. Figures 6a and 6b correspond to points at which the component is maxir
at 1./4 for the linear component and &f8 for the second-order one. Figure 6¢ shows ¢
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point at which the second-order component is minimak &t. At the point of maximal
amplitude, the second-order component increases more slowly from the rest state thal
fundamental one. Figure 7 shows pressure distributions corresponding to each approx
tion. The second-order component presents a maximum at the node of the fundame
while its nodal points correspond to zones where the fundamental does not vanish.
fact means that the nonlinear behaviour of the fluid generates the disappearance o
pressure node in the resonant tube. In the case of a progressive plane wave, it is
known that the distortion of the wave increases with the distance from the source. In
case of a standing wave, the end of the tube closer to the source corresponds to ol
the maximal values of the second harmonic. Figure 8a shows the wave shape of the |
sure at the reflectox(= L). Figure 8b represents the corresponding fast Fourier transfor
(FFT). We can see that the nonlinear distortion of the wave is due to the double-freque
component.

We now consider an air-filled tubey(= 340 m/s,y = 1.6, pg = 1.29 kg/n¥) excited at
30 kHz with an amplitude of % 10" m;« = 4.07 nT 1. The spatial step is = 0.02. Thus
NPS=51 and NPT=16856. CPULt is about 1:40:00 for a study of 150 periods. Figure
represents the tri-dimensional (distance, time, pressure amplitude) diagram of the pres
throughout a standing period. The second-order correction pressure induces the disto
of the total pressure and the disappearance of the node at the centre of the tube.

Figure 10 shows the evolution of the maximal absolute value of the second-order :
total pressure reached during a standing period versus the excitation displacement
plitude. The excitation frequency is 100 kHz, and the medium igait= 340m/sy =
1.6, po = 1.29 kg/n?). In this calculation, a very high attenuatiom £ 45.25 nt!) has
been used. Results show the increase of the wave distortion (showing the importance o
second-order component) ag grows. In fact, the second-order component increases a
cording to a quadratic law, while the fundamental component increases according t
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—5— Total
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167 —
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1E-10 —
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1E-13 —

1E-14
I I I

I I
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Excitation displacement amplitude (*ambda)

FIG. 10. Absolute value of the second-order perturbation and total displacement at 100 kH45.25 nr';
L = 1/2. Evolution of its maximum versus,.
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linear law, with regard to the excitation amplitude. Saturation does not occur in the rat
of amplitudes for which a second-order perturbation model is valid.

4.C.2. Other air-filled tubes are now considereg £ 340 m/s,y = 1.6, and pg =
1.29 kg/n?). The excitation frequency is 20 kHz and= 1.81 nTL. Figure 11 shows the
space representation of the standing pressure for three tubelentt{s), 2- 1/2 (2), and
3-1/2(3). Forallthe cases, the displacement of the piston is the sgrae0.3 um, and the
representation is shown at the time of maximal pressure during a standing period. Figure
shows to the fundamental frequency and Fig. 11b shows the second-order compon
Results clearly show the change in the distribution of the pressure along the tube anc

a) 1200

800 —

Pressure (Pa)

400 —|

Pressure (Pa)

0.0 0.4 0.8 1.2 1.6
Number of wavelengths

FIG. 11. Pressure distribution for three tubelengths at 20 kigz= 0.3 um; o = 1.81 nT%, (1) L = A/2.
(2)L =2-1/2.(3)L = 3-1/2. (a) Fundamental frequencies. (b) Second-order components.
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decrease of the nonlinearity as the length increases (the importance of the second-c
component in relation to the fundamental decreases).

5. CONCLUSION

A numerical algorithm based on the finite-difference method has been presented. It all
the modelling of finite but moderate amplitude standing acoustic waves in the time dom:
The numerical method has been validated by comparison with an analytical model. Vari
kinds of results show the efficiency and limits of the simulating code. This procedure ope
a new framework of development for the modelling and design of high-power ultrasor
processing systems. More sophisticated versions of the code, which include higher o
nonlinearity (weak shock approximation [25]), geometrical variations of the resonator, &
more complicated dispersion relationships, are currently under development.
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